

Cherokee Accidents and Safety Review

A Statistical Analysis

Ron Wanttaja Construction authorized Construction authorized Construction authorized

- "Statistics are like bikinis. What they reveal is interesting. What they conceal is vital!"
 - Professor Aaron Levenstein
- "The purpose of analysis is insight, not bull****"
 - T.C. Weston, The Boeing Company, 1974

- Extract the appropriate Cherokee accidents from the NTSB databases from 2001 to 2010
 - Leave off foreign accidents
- Determine "fleet size"
 - Average number of aircraft from Dec 2000 to January 2011
- Assemble accidents into an analysis database using existing template
- Determine accident causes
 - Read the narrative (not Probable Cause) of each accident
 - Assign to one of 50+ cause categories
- Compare causes for Cherokees vs. a "control group"
- Compare...contrast...analyze

Why Not Just Use the NTSB's "Probable Cause"?

A Typical Accident

- NTSB makes the full accident reports (less the exhibits) available for downloading
 - Only addressed US accidents of N-Numbered aircraft
- For aircraft fleet sizes, used FAA registration database
 - Personal tradition of downloading every January
- Compared PA-28 rates to those of the Cessna 172

et Size 10	Cherokee 140	6127
	Warrior I	1238
	Warrior II/III	2033
	Cherokee 180/Archer I	4256
FIe I-20	Archer II/III	2509
	Pathfinder	1062
Avera 2	Arrow II	1572
	All PA-28	21417
	Cessna 172	25870

- All "PA-28s" are not created equal!
 - "PA-28-XXX" Runs gamut from 140s to Arrow IIIs
- Several different models used the same model number for significantly different airframes
 - E.g., Cherokee 180 and original Archer were both PA-28-180s
 - Lengthened fuselage, larger wing and tail span, higher gross weight
- Many models have too few accidents to produce a decent sample size
 - For detailed analysis, required >100 accidents in the ten year period
- Therefore: detailed analysis only of the "PA-28 Set"
 - PA-28-140, -161, -180, -181
 - Covered other models at times

Overall Accident Rates

- "Fleet Annual Accident Rate":
 - Average number of accidents in a year, divided by the average number of registered examples over the same 10-year period
 - Does NOT take number of hours into account
- "Fatality Rate"
 - Percentage of accidents that resulted in fatalities

PA-28 Fleet Accident Rate

Annual Average Fleet Accident Rate

- Fleet accident rate is about 2/3rds that of the Cessna 172s!
- "Yes, but the Cessna 172 is used as a trainer!"
 - Surprisingly, the PA-28 group was involved in training accidents <u>at a nearly identical rate</u> (~30%)
 - Almost half the Warrior II/III accidents were during training

Fatality Rate

Average Fatality Rate

- Energy in a crash is related to the square of the speed at impact
 - But speed ranges for the most-common PA-28s are about the same as the 172
- Note that the Warrior II fatality rate is a bit less than the Cessna 172
 - Training accidents are generally low-speed affairs
- My work with homebuilts led to a theory that wing position has strong effect on survivability
 - High wing places solid structure above occupant's heads

Wing Position and Fatality Rate

- Training accidents affect both the fleet rate and the fatality rate
- The PA-28 sample used has an almost identical percentage of training accidents, but its fleet rate is about 1/3rd lower than the Cessna 172
- However, the fatality rate is almost twice as high as the 172
 - <u>May</u> be due to less occupant protection in lowwing aircraft
 - Only way to prove it would be an injury survey

Cherokee Accident Causes

- Convert NTSB reports to database, including:
 - Date and location
 - Pilot qualifications
 - Type of operation (Personal, Instruction, etc.)
 - Aircraft total time
 - NTSB ruling of the cause of accident
- Read <u>full</u> narrative of each accident
 - Probable Cause often leaves out significant clues
- Enter my <u>own</u> estimation of the cause into database
 - "Initiator"
- Repeat ~560 times for Cherokees, ~1100 times for Cessna 172s
- Compare & Contrast

Guess Which One is Pilot Miscontrol?

Percent of Total Accidents

- The PA-28 set has a "Pilot Miscontrol" rate ~1/3rd lower than that of the Cessna 172
 - Again, both types have the same percentage of training accidents
- The #2 cause of Cherokee accidents: Fuel Exhaustion!
- PA-28 Set has an accident rate due to Fuel Starvation five times higher than the 172!
 - The good news: Fatality rate for Fuel Exhaustion/Starvation is low (11%)
- Add up all pilot-related errors:
 - PA-28 set: 62%
 - Cessna 172: 76%

Comparing the PA-28 Set

The Problem With Percentages

- Comparing accident causes by percentages is a bit deceptive
 - If one parameter is higher, the others must be lower
 - Has to still add up to 100%!

- Better approach is to compare the raw numbers of accidents
 - But if the numbers of aircraft don't match, the comparison of meaningless
- Let's <u>normalize</u> the number of accidents between types
 - Compute the number of accidents they would have had if the fleet sizes had been the same
 - Multiply PA-28 Set accidents by 1.75

- Really looks like the PA-28 Set is easier to handle than the Cessna 172
 - Number of Cessna 172 miscontrol accidents almost double!
 - Remember, the same rate of training accidents
- Looks like the PA-28 Set is more prone to errors made during maintenance
 - Smaller fleet size, perhaps mechanics aren't as familiar
 - However, this could merely reflect the diligence of Piper Corporation reps involved in investigations
- Higher VFR to IFR accidents probably reflect greater use as traveling aircraft
 - "Gethomeitis" is more prevalent if it's a significant distance

- Can do the same mathematical trick to compare the four airplanes in the PA-28 Set
- Average Fleet Sizes, 2001-2010:
 - PA-28-140 (Cherokee 140): 6127
 - PA-28-161 (Warrior II/III): 2033
 - PA-28-180 (Cherokee 180/Archer I: 4256
 - PA-28-181 (Archer II/III): 2509

Normalized Comparison

Mechanical Failures

Mechanical Failures Involved in Cherokee Accidents

	Total	Mechanical	Engine Internal	Fuel FWF	Controls	Gear/Brakes	Propeller	Other	Carburetor	Ignition	Fuel (Airframe)	Oil System
All	556	60	17	10	7	6	5	4	4	3	2	1
Cherokee I40	180	24	7	4	4	3	2	0	3	0	0	1
Warrior II/III	125	11	3	3	0	0	1	2	1	1	0	0
Cherokee 180	130	18	7	3	2	1	1	1	0	1	2	0
Archer II/III	121	6	0	0	1	2	1	1	0	1	0	0
Summary Columns												

Includes both Initiator and Secondary Causes

Engine Internal (17)

Valve	Valve Lifter	Connecting Rod	Crankshaft	Cylinder	Piston	Muffler
7	2	2	1	3	1	1

Fuel Firewall Forward (10)

- 8/10 due to faulty maintenance (MX) mostly disconnected/loose lines
- One due to failed mechanical fuel pump (coinciding with electrical failure)
- One vapor lock

Controls (7)

- MX: Two cases of a cracked vertical stabilizer and the unapproved maintenance modification to the rudder
- Two case of binding/jamming throttle control
- MX: Disconnected throttle at carburetor
- Sheared mixture cable
- Disengagement of the left control wheel from the control column (manufacturer error)

Gear/Brakes (6)

- Three fatigue cracking of the upper torque link attach lugs
- Stress cracking of gear
- Excessively worn brake pads and rotors
- Spongy brakes (pilot elected to fly)

Accidents Related to Maintenance Mistakes

Mistakes Made

Procedures Not Followed	Inadequate Inspection	Unapproved Mod	AD/SB not complied with	Unqualified Mx	Misapplied Placard
14	5	3	3	1	1

- "Maintenance Mistakes" are not necessarily made by an A&P
 - Owner modifications
 - Owner not complying with ADs and Service Bulletins
- "Procedures Not Followed" may be an indication of lack of PA-28 experience/documentation

System Affected

8
3
3
3
3
2
2
1
1

Wrap-Up

Summary

- While the "Pilot Miscontrol" rate for the PA-28 Set is lower than for Cessna 172s, it is still *four times higher* than the next-highest accident cause
- That second-highest cause is <u>fuel exhaustion</u>
- Mechanical failures seem to be happening somewhat more often, especially associated with maintenance failures
 - Could be affected by parts availability
 - Could just be age...
- Most-common maintenance errors are related to fuel line attachment/routing in the engine compartment
 - Find a mechanic that knows your aircraft!
- One quarter of all PA-28 accidents start with an engine failure...are you ready?

The Fault Lies Not With the Stars...

- Pilots can't usually can't blame anyone else for an accident
 - Even if it's the maintainer's fault, it's still our heinies on the line....
- Statistics predict the aggregate, not the individual
 - Just because ~1 in 250 Cherokees will crash this year, DOESN'T mean you have a 1 in 250 chance of an accident!
- Minimize your exposure by controlling risks
 - Stay current!
 - Manage your fuel (9% of all PA-28 accidents are fuel exhaustion)
 - Pick your weather (25% of pilot error accidents involve strong winds)
 - Avoid VFR into IFR Conditions (6% of accidents)
 - Learn to manage the Cherokee's fuel system (4% of all accidents)
- Use the resources out there
 - WINGS program
 - Owner's Group support