# What Kills Us

#### A Look at Fatal Homebuilt Accidents and their Causes

Ron Wanttaja EAA Chapters 26 & 441

# Agenda



- Use the NTSB accident database to identify fatal homebuilt accidents from 1998 through 2020
- Look at the causes
- Examine which types of accidents are more likely to result in fatalities
  - And where risk reduction activities might be best applied



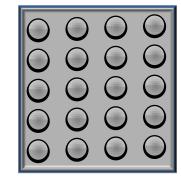
# Why Look at Fatal Accidents?



- To a homebuilt owner any accident is a tragedy
- Fatal accidents provide (mostly)
  the best data
  - Homebuilders QUITE accustomed to disassembling and trailering their aircraft
  - NTSB 830 open to (generous) interpretation
- FAA and EAA work together, have thresholds based on fatal accidents






# Boilerplate

(You'll see this on every presentation I do)

- Analysis is based on my own analysis of Experimental/ Amateur-Built (EAB) aircraft in the NTSB accident list
  - I make my own assessment of cause; don't automatically use the NTSB's "Probable Cause"
- Analysis features:

- Download of the database itself, not on the online version
- Data covers 20+ years starting in 1998
- Includes only <u>Experimental Amateur-Built aircraft</u> built/operated in the US as personal aircraft
  - No SLSA/ELSA, Ultralights, Air Show/Racing aircraft, 737s, Beech Bonanzas, etc.
  - No foreign accidents, no foreign homebuilts in the US (were not built to US Amateur-Built aircraft requirements)
  - Above criteria typically eliminates 15% to 25% of fatal accidents that were flagged as "Amateur-Built" in the online NTSB data
- Also search overall accidents for aircraft that were EAB but were not labeled "Homebuilt"...are added to the database
  - Added 25% more to the total of fatal homebuilt accidents in 2020



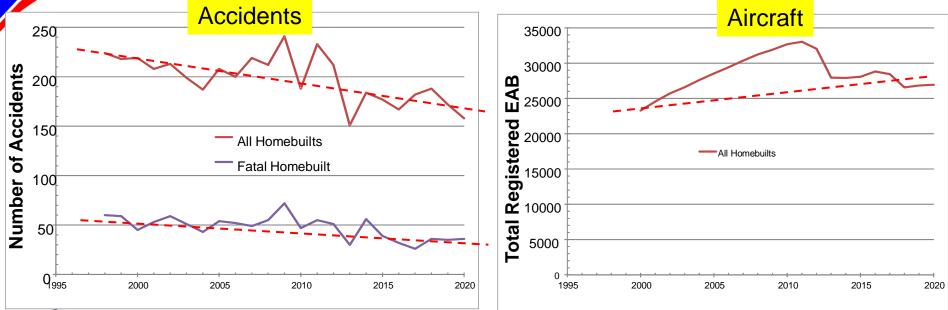








# **Overall Fatality Rates**




Definition of "Fatal Accident": At *least* one fatality occurred



#### Accidents, Fatal Accidents, Number of Homebuilts

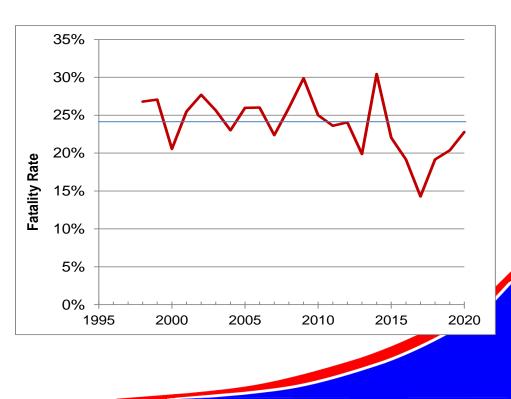






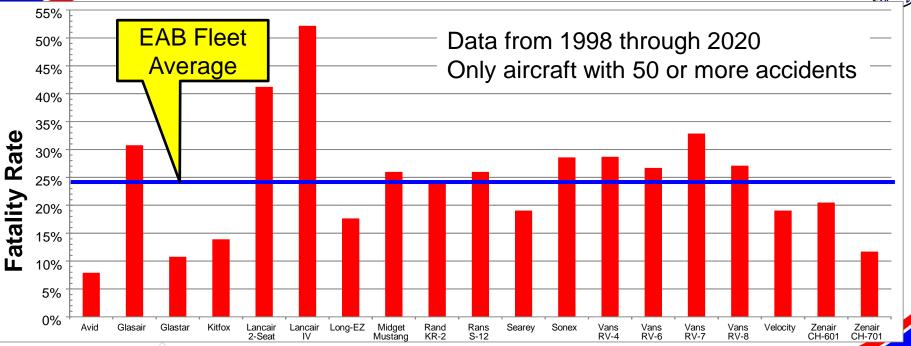
Number of Accidents Trending Downward.... ... While Number of Homebuilts Increases

## **Fatality Rate**




- Key analysis factor is "Fatality Rate": How many accidents result in at least one fatality
  - E.g., three fatal accidents out of ten aircraft is a 30% fatality rate

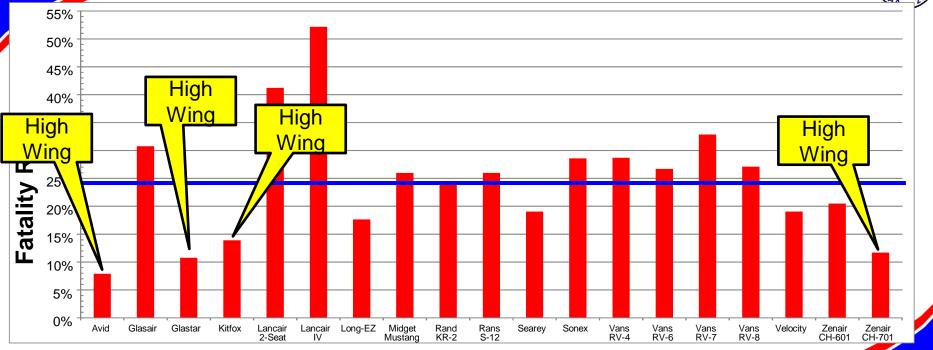



## **Fatality Rate Over Time**

- Fatality Rate has stayed roughly the same since 1998
- 2015-2020 <u>may</u> be showing an improvement
- Overall Rate: 24.0%
  - Almost one out of every four homebuilt accidents is fatal



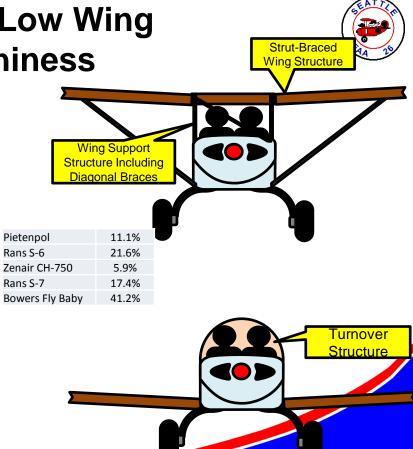



## Fatality Rate by EAB Type



Q. What is common among the best-scoring aircraft? Q. What is common among the worst-scoring aircraft?

75


### **Best (Lowest) Scoring EAB**





#### High Wing vs. Low Wing Crashworthiness

- High wing aircraft put significant amount of structure around occupant's heads
  - Struts, carry-through spars, even diagonal bracing
- Low wing aircraft <u>might</u> have a turnover structure
- EAB aircraft below the 50-accident threshold are consistent
- But...in the EAB world, the high-wing aircraft tend to be lighter/lower performance
  - Glastar is the most common exception

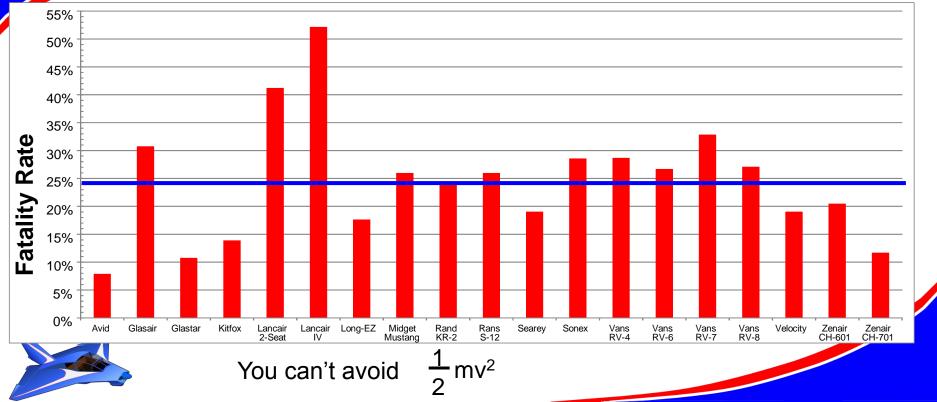




# A Look at the Glastar Structure



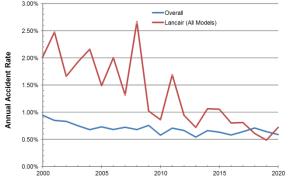
- Higher performance than most high-wing homebuilts
- 2<sup>nd</sup> lowest fatality rate (10.8%)
- Cruises ~15% slower than the RV-9, has about half the fatality rate






# **Common Factor for Higher Fatality**








# In Defense of the Lancair IV



- Lancair IV has about the same performance envelope as the Curtiss P-40!
- Lancair accident rates have dropped drastically

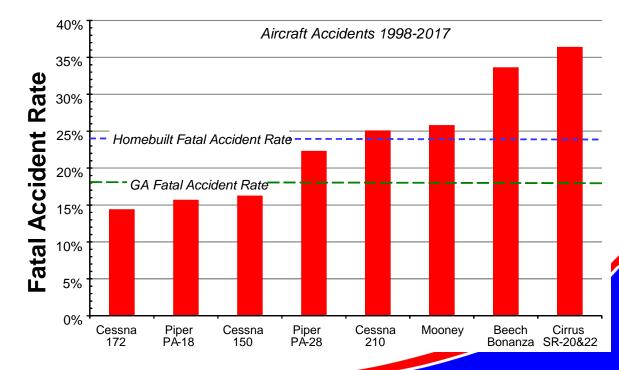


Lancair 4 Average Rates Over Three Years: 2000-2002: 2.65% 2016-2018: 0.55%

• Low-Time pilots NOT a factor!

- Overall EAB accident median 1000 hours
- Lancair IV accident median 2500 hours!
  - Less than 1/10<sup>th</sup> of accident pilots had less than 1,000 hours




|               | Lancair IV | P-40 |         |  |  |  |  |
|---------------|------------|------|---------|--|--|--|--|
| Max Speed     | 342        | 334  | MPH     |  |  |  |  |
| Cruise Speed  | 335        | 308  | MPH     |  |  |  |  |
| Stall Speed   | 71         | 75   | MPH     |  |  |  |  |
| Wing Loading  | 36.2       | 35.1 | Lb/Ft^2 |  |  |  |  |
| Power Loading | 0.1        | 0.14 | hp/lb   |  |  |  |  |
|               |            |      |         |  |  |  |  |

#### **Comparing Homebuilt to Production Fatality Rates**



- Homebuilts have a ~24% Fatality Rate
- GA Average is ~18%!





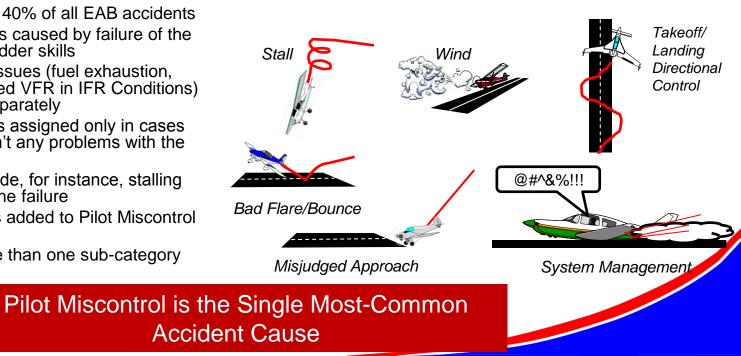






# **Causes of Fatal Homebuilt Accidents**



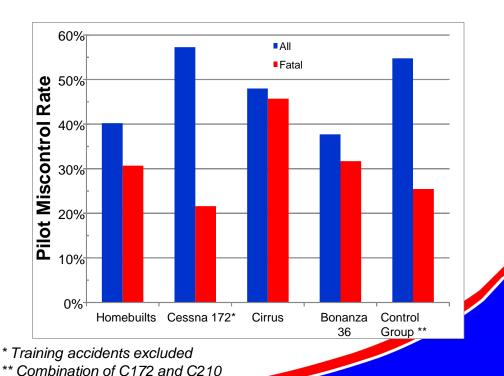



# Pilot Miscontrol



- "Pilot Miscontrol" is my version of "Loss of Control"
  - Accounts for 40% of all EAB accidents
- Refers to accidents caused by failure of the ٠ pilot's stick-and-rudder skills
  - Judgement issues (fuel exhaustion, CG, Continued VFR in IFR Conditions) are tallied separately
- "Pilot Miscontrol" is assigned only in cases where there weren't any problems with the aircraft
  - Doesn't include, for instance, stalling after an engine failure
- Secondary causes added to Pilot Miscontrol where appropriate
  - Can list more than one sub-category

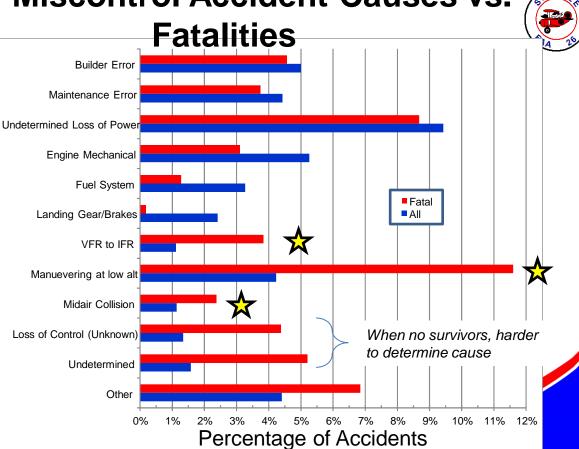
#### Pilot Miscontrol Secondary Causes






### **Pilot Miscontrol Rate in Fatal Accidents**




- Pilot Miscontrol is less prevalent in fatal accidents
- However: Most Pilot
  Miscontrol cases occur in
  the runway environment!
  - Lower speeds, closer to ground, less likely to be fatal





#### Non-Miscontrol Accident Causes vs.

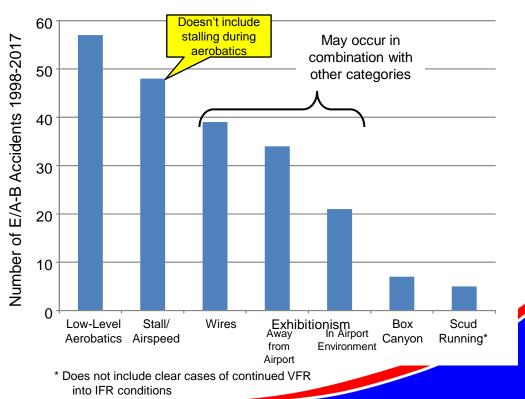
- Engine failures have a lower fatality rate
  - 21% vs. 30% for all accidents
- Over 11% of all fatal accidents involve maneuvering at low altitude
  - Overlap with some stall cases, of course
- Continued VFR into IFR conditions is a concern, but not as much as some people think
- 36% of the midairs involved formation flying!
  - 68% of the formation accidents were RVs!



# **Continued VFR into IFR Conditions**



- Biggest myth in aviation: "Most accidents occur due to continued VFR into IFR conditions"
  - Only 1.1% of all homebuilt accidents
  - Only 2.6% of all Cessna 172 accidents (nontraining)
- Larger percent of fatal accidents (3.8% of homebuilt fatals)
  - Not really a survivable scenario Accidents generally involve either running into something at near-cruise speeds, or losing control of the aircraft
    - You make it through the weather, or you die....
  - 14% of Cessna 172 fatal accidents

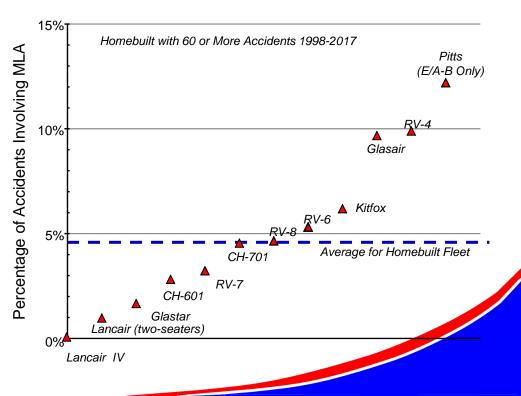





# Maneuvering at Low Altitude



- "Maneuvering at Low Altitude" covers a number of risky activities
  - "Used to call it SALA ("Stupidity at Low Altitude")
- Instances may also be counted among the "Stall" tally
- Failure to recover from an aerobatic maneuver NOT included in this category
  - As long as maneuver was started at a legal altitude
  - 24 cases of this type
- Airshow accidents also not included




#### Maneuvering at Low Altitude – Who's Doing It?



- You'd think it would be biased towards "Sport" homebuilts (vs. cross-country cruisers)
  - Yet nine out of 104 Glasair accidents involved low flying
    - Five were low-level aerobatics!
- Pitts also had nine accidents

- All but two involved aerobatics....
- Surprisingly, in terms of <u>number</u> of accidents, the Kitfox is the "winner"
  - 14 during the analysis time period
  - Lower percentage due to size of fleet
  - RV-6 and RV-4 get the #2 and #3 position...



# Looking at Stalls



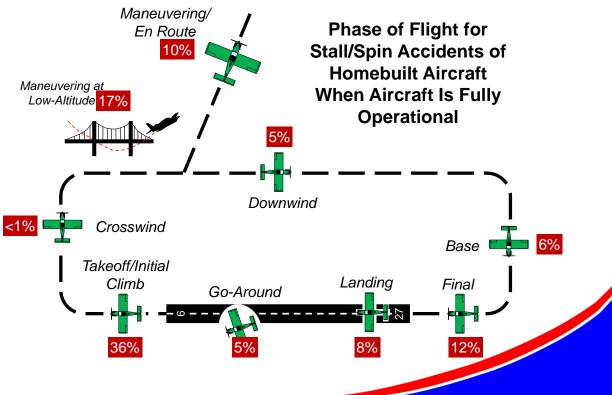
- Pilot Miscontrol tally includes whether a stall was part of the miscontrol
- However, my system does not attribute post-engine-failure stalls to Pilot Miscontrol
  - Pilot Miscontrol includes accidents only with fully-functional aircraft
- Ran separate analysis for accidents
  which included power failure
  - Fatality rate when engine failure occurs is actually lower (30.5% vs. 21.9% for fatal accidents)

|                                                                     | All   | Fatal |
|---------------------------------------------------------------------|-------|-------|
| Percentage involving Miscontrol with Stall (e.g., no engine issues) | 8.5%  | 16.6% |
| Percentage with engine failure and Stall                            | 3.7%  | 9.5%  |
| Percentage of ALL accidents involving<br>stalls                     | 12.2% | 26.1% |

About one out of every eight homebuilt accidents involve a stall

Over a quarter of all fatal homebuilt accidents

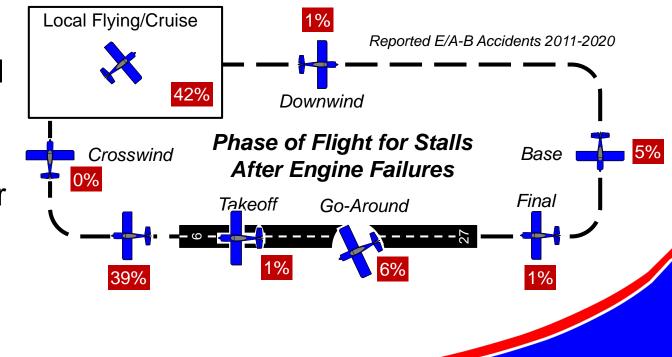



# Where Stalls Occur: Engine Running



- Diagram shows where stall/spin accidents occur when engine power is available
- Base-to-Final is about 18%

Sel-


 TWICE as many stalls happen on the takeoff or initial climb



#### Where Stalls Occur: After Engine Failure



- Majority occur on takeoff, initial climb, or goaround
  - Engine under the most stress



# **Picking the Forced-Landing Spot**



- If you keep control of the aircraft, you might have a choice in the spot the airplane will end up
- What's the survival rate for various types of terrain?





rees





# **Survival Rate After Engine Failure**



#### When the Pilot Maintains Control of the Aircraft

|               |             |       |           |        |         |       |         | Power  |       |       |          |          |
|---------------|-------------|-------|-----------|--------|---------|-------|---------|--------|-------|-------|----------|----------|
|               | Runway      | Heavy |           |        | Rough   |       | Road/   | Poles/ |       |       | Short of | Pasture/ |
|               | Environment | Brush | Buildings | Fences | Terrain | Water | Ditches | Lines  | Trees | Marsh | Runway   | Fields   |
| Cases*        | 71          | 15    | 18        | 22     | 13      | 12    | 50      | 16     | 70    | 9     | 27       | 162      |
| Survival Rate | 92%         | 100%  | 75%       | 100%   | 92%     | 100%  | 96%     | 80%    | 82%   | 75%   | 100%     | 93%      |

#### Average 84.5% Survival Rate



\* Some cases involve more than one object

# **Survival Rate After Engine Failure**



#### When the Pilot Maintains Control of the Aircraft

|                             |             |       |           |        |         |       |         | Power  |       |       |          |          |
|-----------------------------|-------------|-------|-----------|--------|---------|-------|---------|--------|-------|-------|----------|----------|
|                             | Runway      | Heavy |           |        | Rough   |       | Road/   | Poles/ |       |       | Short of | Pasture/ |
|                             | Environment | Brush | Buildings | Fences | Terrain | Water | Ditches | Lines  | Trees | Marsh | Runway   | Fields   |
| Cases*                      | 71          | 15    | 18        | 22     | 13      | 12    | 50      | 16     | 70    | 9     | 27       | 162      |
| Survival Rate               | 92%         | 100%  | 75%       | 100%   | 92%     | 100%  | 96%     | 80%    | 82%   | 75%   | 100%     | 93%      |
| Average 84.5% Survival Rate |             |       |           |        |         |       |         |        |       |       |          |          |

When the Pilot Loses Control and Stalls the Aircraft

# 39% Survival Rate



### Summary



| Type of Accident           | All          | Fatal |
|----------------------------|--------------|-------|
| Miscontrol Stall           | 8.5%         | 16.3% |
| Stalls during engine-out   | 3.7%         | 9.4%  |
| Manuevering at Low Altitud | le 4.2%      | 11.6% |
| Midair Collisions          | 1.1%         | 2.4%  |
| Continued VFR in IFR Con   | ditions 1.1% | 3.8%  |
|                            |              |       |

- About 24% of homebuilt accidents result in fatalities
- More than a quarter of fatal accidents involve stalls
  - 6.3% of <u>all</u> accidents are fatalities after a stall
  - Need continued emphasis on airspeed control and AOA systems
- If your engine quits, maintain control of the aircraft!



Questions? ron@wanttaja.com

